Tutorial: creazione di un cluster con un’attività Fargate utilizzando la CLI di Amazon ECS

Questo tutorial mostra come configurare un cluster e distribuire un servizio con attività che utilizzano il tipo di lancio Fargate.

Prerequisiti

Verifica i seguenti requisiti preliminari:

Fase 1: Crea il ruolo IAM per l’esecuzione dell’attività

L’agente del container Amazon ECS effettua chiamate all’API di AWS per tuo conto, pertanto richiede una policy e un ruolo IAM che consentano al servizio di stabilire che l’agente appartiene a te. Questo ruolo IAM viene definito un ruolo IAM di esecuzione delle attività. Se disponi già di un ruolo per l’esecuzione delle attività pronto per essere utilizzato, puoi ignorare questa fase. Per ulteriori informazioni, consulta Ruolo IAM per l’esecuzione di attività Amazon ECS.

Per creare il ruolo IAM per l’esecuzione delle attività utilizzando AWS CLI

  1. Crea un file denominato task-execution-assume-role.json con i seguenti contenuti:{ "Version": "2012-10-17", "Statement": [ { "Sid": "", "Effect": "Allow", "Principal": { "Service": "ecs-tasks.amazonaws.com" }, "Action": "sts:AssumeRole" } ] }
  2. Crea il ruolo per l’esecuzione delle attivitàaws iam --region us-west-2 create-role --role-name ecsTaskExecutionRole --assume-role-policy-document file://task-execution-assume-role.json
  3. Collega la policy relativa al ruolo per l’esecuzione delle attività:aws iam --region us-west-2 attach-role-policy --role-name ecsTaskExecutionRole --policy-arn arn:aws:iam::aws:policy/service-role/AmazonECSTaskExecutionRolePolicy

Fase 2: Configura la CLI di Amazon ECS

Per poter effettuare richieste API a tuo nome, la CLI di Amazon ECS necessita delle credenziali, che può estrarre da variabili di ambiente, da un profilo AWS o da un profilo Amazon ECS. Per ulteriori informazioni, consulta Configurazione della CLI di Amazon ECS.

Per creare una configurazione della CLI di Amazon ECS

  1. Crea una configurazione cluster, che definisce la regione AWS, i prefissi di creazione delle risorse e il nome del cluster da utilizzare con la CLI di Amazon ECS:ecs-cli configure --cluster tutorial --default-launch-type FARGATE --config-name tutorial --region us-west-2
  2. Crea un profilo CLI utilizzando l’ID chiave di accesso e la chiave segreta:ecs-cli configure profile --access-key AWS_ACCESS_KEY_ID --secret-key AWS_SECRET_ACCESS_KEY --profile-name tutorial-profile

Fase 3: creare un cluster e configurare il gruppo di sicurezza

Per creare un cluster ECS e un gruppo di sicurezza

  1. Creare un cluster Amazon ECS con il comando ecs-cli up. Poiché nella configurazione del cluster hai specificato Fargate come tipo di lancio predefinito, il comando crea un cluster vuoto e un VPC configurato con due sottoreti pubbliche.ecs-cli up --cluster-config tutorial --ecs-profile tutorial-profilePossono essere necessari alcuni minuti perché le risorse vengano create e il comando venga completato. L’output di questo comando contiene gli ID di sottorete e i VPC creati. Prendi nota di questi ID poiché verranno utilizzati in un secondo momento.
  2. Utilizzando l’AWS CLI, recupera l’ID del gruppo di sicurezza predefinito per il VPC. Utilizza l’ID VPC dell’output precedente:aws ec2 describe-security-groups --filters Name=vpc-id,Values=VPC_ID --region us-west-2L’output di questo comando contiene l’ID del gruppo di sicurezza, utilizzato nella fase successiva.
  3. Tramite l’AWS CLI, aggiungi una regola del gruppo di sicurezza per consentire l’accesso in entrata sulla porta 80:aws ec2 authorize-security-group-ingress --group-id security_group_id --protocol tcp --port 80 --cidr 0.0.0.0/0 --region us-west-2

Fase 4: Crea un file Compose

In questa fase dovrai generare un semplice file Docker Compose che crea un’applicazione Web PHP. Attualmente, la CLI di Amazon ECS supporta le versione 1, 2 e 3 della sintassi del file di Docker Compose. Questo tutorial utilizza Docker Compose v3.

Di seguito è riportato il file di Compose, che puoi denominare docker-compose.yml. Il container web espone la porta 80 per il traffico in entrata al server Web, oltre a configurare il posizionamento dei log di container nel gruppo di log CloudWatch creato in precedenza. Questa riportata è la best practice per le attività Fargate.

version: '3'
services:
  web:
    image: amazon/amazon-ecs-sample
    ports:
      - "80:80"
    logging:
      driver: awslogs
      options: 
        awslogs-group: tutorial
        awslogs-region: us-west-2
        awslogs-stream-prefix: web

Nota

Se il tuo account contiene già un gruppo di log CloudWatch Logs denominato tutorial nella regione us-west-2, scegli un nome univoco in modo che l’interfaccia a riga di comando ECS crei un nuovo gruppo di log per questo tutorial.

Oltre alle informazioni del file di Docker Compose, dovrai specificare alcuni parametri specifici di Amazon ECS necessari per il servizio. Utilizzando gli ID per VPC, sottorete e gruppo di sicurezza ottenuti nel passo precedente, crea un file denominato ecs-params.yml con il seguente contenuto:

version: 1
task_definition:
  task_execution_role: ecsTaskExecutionRole
  ecs_network_mode: awsvpc
  task_size:
    mem_limit: 0.5GB
    cpu_limit: 256
run_params:
  network_configuration:
    awsvpc_configuration:
      subnets:
        - "subnet ID 1"
        - "subnet ID 2"
      security_groups:
        - "security group ID"
      assign_public_ip: ENABLED

Fase 5: Distribuisci il file Compose a un cluster

Dopo aver creato il file Compose, puoi distribuirlo al cluster con il comando ecs-cli compose service up. Per impostazione predefinita, il comando cerca i file denominati docker-compose.yml ed ecs-params.yml nella directory corrente; puoi specificare un altro file di Docker Compose con l’opzione --file e un altro file ECS Params con l’opzione --ecs-params. Per impostazione predefinita, le risorse create da questo comando contengono la directory corrente nel titolo, ma puoi sostituire questo valore con l’opzione --project-name. L’opzione --create-log-groups crea i gruppi di log CloudWatch per i log di container.

ecs-cli compose --project-name tutorial service up --create-log-groups --cluster-config tutorial --ecs-profile tutorial-profile

Fase 6: Visualizza i container in esecuzione su un cluster

Dopo aver distribuito il file Compose, puoi visualizzare i container in esecuzione nel servizio con il comando ecs-cli compose service ps.

ecs-cli compose --project-name tutorial service ps --cluster-config tutorial --ecs-profile tutorial-profile

Output:

Name                                           State    Ports                     TaskDefinition  Health
tutorial/0c2862e6e39e4eff92ca3e4f843c5b9a/web  RUNNING  34.222.202.55:80->80/tcp  tutorial:1      UNKNOWN

Nell’esempio precedente, dal file Compose puoi visualizzare sia il container web, sia l’indirizzo IP e la porta del server Web. Se il browser Web fa riferimento a tale indirizzo, viene visualizzata l’applicazione Web PHP. Nell’output è riportato anche il valore task-id del container. Copia l’ID attività, che ti servirà nella fase successiva.

Fase 7: Visualizza i log di container

Visualizza i log per l’attività:

ecs-cli logs --task-id 0c2862e6e39e4eff92ca3e4f843c5b9a --follow --cluster-config tutorial --ecs-profile tutorial-profile

Nota

L’opzione --follow indica alla CLI di Amazon ECS di eseguire continuamente il polling per i log.

Fase 8: Dimensiona le attività sul cluster

Con il comando ecs-cli compose service scale puoi ampliare il numero di attività per aumentare il numero di istanze dell’applicazione. In questo esempio, il conteggio in esecuzione dell’applicazione viene portato a due.

ecs-cli compose --project-name tutorial service scale 2 --cluster-config tutorial --ecs-profile tutorial-profile

Ora nel cluster saranno presenti due container in più:

ecs-cli compose --project-name tutorial service ps --cluster-config tutorial --ecs-profile tutorial-profile

Output:

Name                                           State    Ports                      TaskDefinition  Health
tutorial/0c2862e6e39e4eff92ca3e4f843c5b9a/web  RUNNING  34.222.202.55:80->80/tcp   tutorial:1      UNKNOWN
tutorial/d9fbbc931d2e47ae928fcf433041648f/web  RUNNING  34.220.230.191:80->80/tcp  tutorial:1      UNKNOWN

Fase 9: visualizzare l’applicazione Web

Inserisci l’indirizzo IP dell’attività nel browser Web per visualizzare una pagina Web contenente l’applicazione Web Simple PHP App (App PHP semplice).

Fase 10: Elimina

Al termine di questo tutorial, dovrai eliminare le risorse in modo che non comportino ulteriori addebiti. Per prima cosa, elimina il servizio: in questo modo i container esistenti verranno interrotti e non tenteranno di eseguire altre attività.

ecs-cli compose --project-name tutorial service down --cluster-config tutorial --ecs-profile tutorial-profile

Ora arresta il cluster per eliminare le risorse create in precedenza con il comando ecs-cli up.

ecs-cli down --force --cluster-config tutorial --ecs-profile tutorial-profile

Ready-to-use commands and tips for kubectl

Image for post

Kubectl is the most important Kubernetes command-line tool that allows you to run commands against clusters. We at Flant internally share our knowledge of using it via formal wiki-like instructions as well as Slack messages (we also have a handy and smart search engine in place — but that’s a whole different story…). Over the years, we have accumulated a large number of various kubectl tips and tricks. Now, we’ve decided to share some of our cheat sheets with a wider community.

I am sure our readers might be familiar with many of them. But still, I hope you will learn something new and, thereby, improve your productivity.

NB: While some of the commands & techniques listed below were compiled by our engineers, others were found on the Web. In the latter case, we checked them thoroughly and found them useful.

Well, let’s get started!

Getting lists of pods and nodes

1. I guess you are all aware of how to get a list of pods across all Kubernetes namespaces using the --all-namespaces flag. Many people are so used to it that they have not noticed the emergence of its shorter version, -A (it exists since at least Kubernetes 1.15).

2. How do you find all non-running pods (i.e., with a state other than Running)?

kubectl get pods -A --field-selector=status.phase!=Running | grep -v Complete
Image for post

By the way, examining the --field-selector flag more closely (see the relevant documentation) might be a good general recommendation.

3. Here is how you can get the list of nodes and their memory size:

kubectl get no -o json | \
jq -r '.items | sort_by(.status.capacity.memory)[]|[.metadata.name,.status.capacity.memory]| @tsv'
Image for post

4. Getting the list of nodes and the number of pods running on them:

kubectl get po -o json --all-namespaces | \
jq '.items | group_by(.spec.nodeName) | map({"nodeName": .[0].spec.nodeName, "count": length}) | sort_by(.count)'
Image for post

5. Sometimes, DaemonSet does not schedule a pod on a node for whatever reason. Manually searching for them is a tedious task, so here is a mini-script to get a list of such nodes:

ns=my-namespace
pod_template=my-pod
kubectl get node | grep -v \"$(kubectl -n ${ns} get pod --all-namespaces -o wide | fgrep ${pod_template} | awk '{print $8}' | xargs -n 1 echo -n "\|" | sed 's/[[:space:]]*//g')\"

6. This is how you can use kubectl top to get a list of pods that eat up CPU and memory resources:

# cpu
kubectl top pods -A | sort --reverse --key 3 --numeric
# memory
kubectl top pods -A | sort --reverse --key 4 --numeric

7. Sorting the list of pods (in this case, by the number of restarts):

kubectl get pods --sort-by=.status.containerStatuses[0].restartCount
Image for post

Of course, you can sort them by other fields, too (see PodStatus and ContainerStatus for details).

Getting other data

1. When tuning the Ingress resource, we inevitably go down to the service itself and then search for pods based on its selector. I used to look for this selector in the service manifest, but later switched to the -o wide flag:

kubectl -n jaeger get svc -o wide
NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE SELECTORjaeger-cassandra ClusterIP None <none> 9042/TCP 77d app=cassandracluster,cassandracluster=jaeger-cassandra,cluster=jaeger-cassandra

As you can see, in this case, we get the selector used by our service to find the appropriate pods.

2. Here is how you can easily print limits and requests of each pod:

kubectl get pods -n my-namespace -o=custom-columns='NAME:spec.containers[*].name,MEMREQ:spec.containers[*].resources.requests.memory,MEMLIM:spec.containers[*].resources.limits.memory,CPUREQ:spec.containers[*].resources.requests.cpu,CPULIM:spec.containers[*].resources.limits.cpu'
Image for post

3. The kubectl run command (as well as createapplypatch) has a great feature that allows you to see the expected changes without actually applying them — the --dry-run flag. When it is used with -o yaml, this command outputs the manifest of the required object. For example:

kubectl run test --image=grafana/grafana --dry-run -o yamlapiVersion: apps/v1
kind: Deployment
metadata:
creationTimestamp: null
labels:
run: test
name: test
spec:
replicas: 1
selector:
matchLabels:
run: test
strategy: {}
template:
metadata:
creationTimestamp: null
labels:
run: test
spec:
containers:
- image: grafana/grafana
name: test
resources: {}
status: {}

All you have to do now is to save it to a file, delete a couple of system/unnecessary fields, et voila.

NB: Please note that the kubectl run behavior has been changed in Kubernetes v1.18 (now, it generates Pods instead of Deployments). You can find a great summary on this issue here.

4. Getting a description of the manifest of a given resource:

kubectl explain hpaKIND:     HorizontalPodAutoscaler
VERSION: autoscaling/v1DESCRIPTION:
configuration of a horizontal pod autoscaler.FIELDS:
apiVersion <string>
APIVersion defines the versioned schema of this representation of an
object. Servers should convert recognized schemas to the latest internal
value, and may reject unrecognized values. More info:
https://git.k8s.io/community/contributors/devel/api-conventions.md#resourceskind <string>
Kind is a string value representing the REST resource this object
represents. Servers may infer this from the endpoint the client submits
requests to. Cannot be updated. In CamelCase. More info:
https://git.k8s.io/community/contributors/devel/api-conventions.md#types-kindsmetadata <Object>
Standard object metadata. More info:
https://git.k8s.io/community/contributors/devel/api-conventions.md#metadataspec <Object>
behaviour of autoscaler. More info:
https://git.k8s.io/community/contributors/devel/api-conventions.md#spec-and-status.status <Object>
current information about the autoscaler.

Well, that is a piece of extensive and very helpful information, I must say.

Networking

1. Here is how you can get internal IP addresses of cluster nodes:

kubectl get nodes -o json | \
jq -r '.items[].status.addresses[]? | select (.type == "InternalIP") | .address' | \
paste -sd "\n" -
Image for post

2. And this way, you can print all services and their respective nodePorts:

kubectl get --all-namespaces svc -o json | \
jq -r '.items[] | [.metadata.name,([.spec.ports[].nodePort | tostring ] | join("|"))]| @tsv'

3. In situations where there are problems with the CNI (for example, with Flannel), you have to check the routes to identify the problem pod. Pod subnets that are used in the cluster can be very helpful in this task:

kubectl get nodes -o jsonpath='{.items[*].spec.podCIDR}' | tr " " "\n"
Image for post

Logs

1. Print logs with a human-readable timestamp (if it is not set):

kubectl -n my-namespace logs -f my-pod --timestamps2020-07-08T14:01:59.581788788Z fail: Microsoft.EntityFrameworkCore.Query[10100]

Logs look so much better now, don’t they?

2. You do not have to wait until the entire log of the pod’s container is printed out — just use --tail:

kubectl -n my-namespace logs -f my-pod --tail=50

3. Here is how you can print all the logs from all containers of a pod:

kubectl -n my-namespace logs -f my-pod --all-containers

4. Getting logs from all pods using a label to filter:

kubectl -n my-namespace logs -f -l app=nginx

5. Getting logs of the “previous” container (for example, if it has crashed):

kubectl -n my-namespace logs my-pod --previous

Other quick actions

1. Here is how you can quickly copy secrets from one namespace to another:

kubectl get secrets -o json --namespace namespace-old | \
jq '.items[].metadata.namespace = "namespace-new"' | \
kubectl create-f -

2. Run these two commands to create a self-signed certificate for testing:

openssl req -x509 -nodes -days 365 -newkey rsa:2048 -keyout tls.key -out tls.crt -subj "/CN=grafana.mysite.ru/O=MyOrganization"
kubectl -n myapp create secret tls selfsecret --key tls.key --cert tls.crt

Helpful links on the topic

In lieu of conclusion — here is a small list of similar publications and cheat sheets’ collections we’ve found online:

Image for post